CIPS-SMP 2024 大模型时代的AI+

第十二届全国社会媒体处理大会

The Twelfth China National Conference on Social Media Processing

SMP2024 博士论坛

大模型工具学习与垂直领域应用

的一些思考

王元淳

中国人民大学

2024年10月

About Me

Yuanchun Wang (王元淳)

Ph.D. Student

Peijing, China

Renmin University of China

About Me

I am a Ph.D. student at the School of Information, Renmin University of China, under supervision of <u>Jing Zhang</u>. At the same time, I'm an intern at THUKEG and ZHIPU.AI, under supervision of <u>Jifan Yu</u>. Previous to that, I graduated from <u>Honors College</u> of Northwestern Polytechnical University, where I majored in Computer Science and Technology.

Currently, my research focuses on **Tool Intelligence of LLMs** and **Al for Education**. Besides, I love soccer, photography, and snowboarding. I also keep training for triathlon races . Feel free to contact me for our shared interests whether in research or life.

Selected Publications:

- Tool Intelligence of LLMs
 - SoAy: A Solution-based LLM API-using Methodology for Academic Information Seeking
 - R-Eval: A Unified Toolkit for Evaluating Domain Knowledge of Retrieval Augmented Large Language Models
- Al for Education
 - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents

Currently, the common requirement of LLM specific domain application is **domain QA**.

Challenge of the directly deployment of LLMs into a specific domain:

Hallucination in General-purpose LLMs:

- Lack of command of Domain Knowledge
- Difficult in Information updating

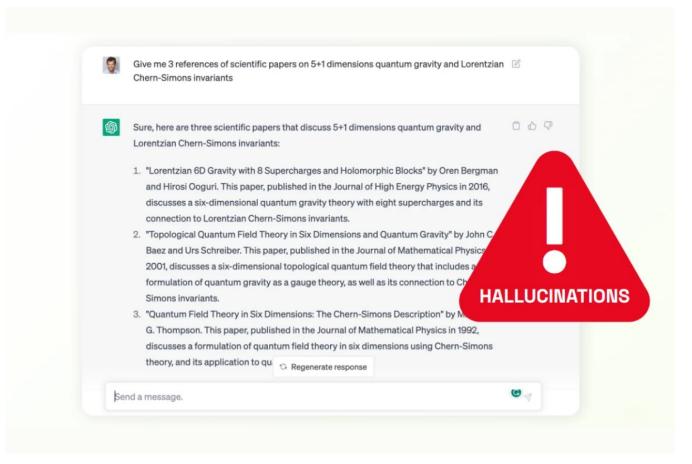


Fig.1 ChatGPT hallucinates on providing scientific reference.

Methods of apply LLM into specific domain:

- Training on collected domain dataset.
 - High cost of data collecting.
 - Still difficult in information updating
- Text2SQL
- Retrieval-augmented Generation

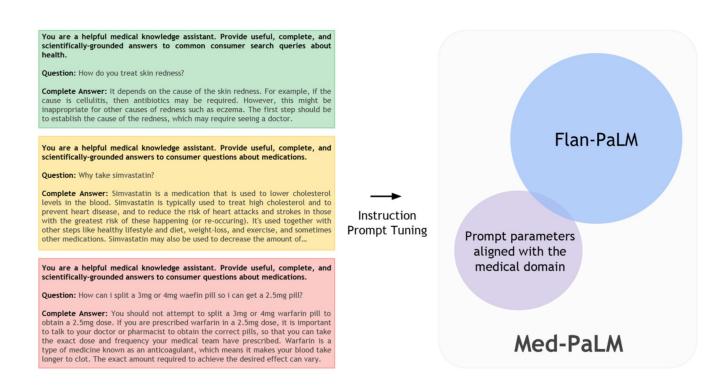


Fig.2 Flan-PaLM into Med-PaLM: Training on medical data.

Methods of apply LLM into specific domain:

- Training on collected domain dataset.
- Text2SQL
 - Limited on specific SQL Language.
 - Safety concerns about interaction directly with DB.
- Retrieval-augmented Generation

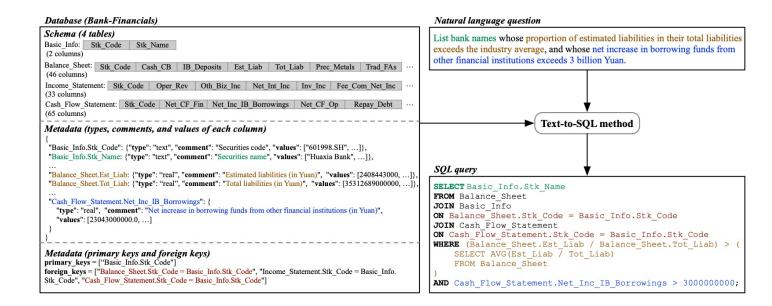


Fig.3 LLM interaction with domain KB through SQL query.

Methods of apply LLM into specific domain:

- Training on collected domain dataset.
- Text2SQL
- Retrieval-augmented Generation
 - Through Retriever
 - Through External Tools (Tool Learning)

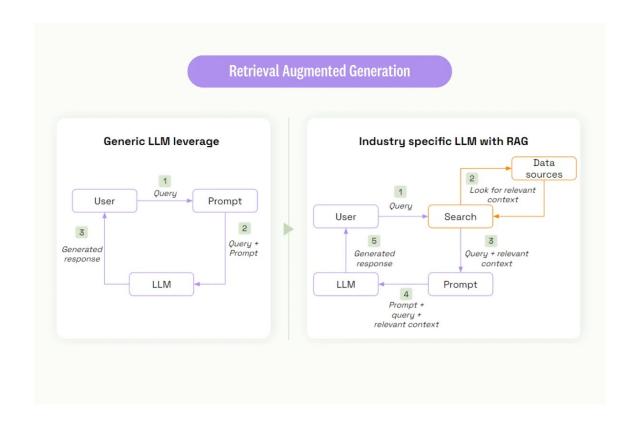


Fig.4 LLM specific domain application through RAG.

LLM Tool Learning

LLMs can use tools to interact with external environment, including **web news**, **calculator**, real-world **agent scene**, and **domain knowledge**...

- How to teach LLMs to use IR tools to get domain knowledge?
- How to evaluate the ability of the LLM domain tool using?

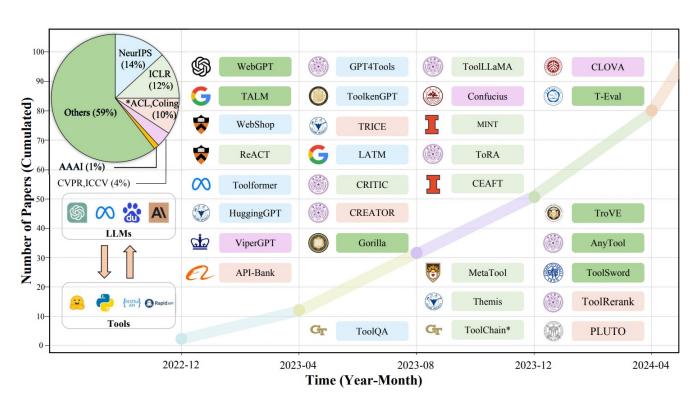


Fig.5 LLM specific domain application through Tool Learning.

SoAy: A Solution-based LLM API-using Methodology for Academic Information Seeking

Yuanchun Wang^{†*}, Jifan Yu^{§*}, Zijun Yao[§], Jing Zhang[†], Yuyang Xie[§], Shangqing Tu[§]
Yiyang Fu[†], Youhe Feng[†], Jinkai Zhang[†], Jingyao Zhang[¢], Bowen Huang[¢], Yuanyao Li[¢]
Huihui Yuan[¢], Lei Hou[§], Juanzi Li[§] and Jie Tang[§]

†Renmin University of China [§]Tsinghua University [¢]Zhipu AI

[Paper] https://arxiv.org/pdf/2405.15165

[Code] https://github.com/RUCKBReasoning/SoAy

[System] https://soay.aminer.cn/

[Model] https://huggingface.co/frederickwang99/soayllama_v2_7b

[Benchmark & Dataset] https://huggingface.co/datasets/frederickwang99/SoAyBench

Seeking Academic Metadata

Query: How many times has New York University's Yann LeCun's most cited publication been cited?

Step 1: Typing Keywords in the searching box

Seeking Academic Metadata

Query: How many times has New York University's Yann LeCun's most cited publication been cited?

X 🥷 Q Google Yann Lecun Google Scholar https://scholar.google.com > citations Yann LeCun Yann LeCun, Chief Al Scientist at Facebook & Silver Professor at the Courant Institute, New York University. Verified email at cs.nyu.edu ... https://en.wikipedia.org > wiki > Yann LeC... Yann LeCun Yann André LeCun is a French-American computer scientist working primarily in the fields of Q Yann Lecun machine learning, computer vision, mobile robotics and .. Google 搜 Yann LeCun's Home Page Yann LeCun, VP and Chief Al Scientist, Facebook Silver Professor of Computer Science, Data Science, Neural Science, and Electrical and Computer Engineering, ... Yann's DjVu Page · MNIST handwritten digit · Fun Stuff · Publications Yann LeCun (@ylecun) / X Professor at NYU. Chief Al Scientist at Meta. Researcher in Al, Machine Learning, Robotics, etc. ACM Turing Award Laureate.

Step 2: Find the probable item in the results list.

Seeking Academic Metadata

Query: How many times has New York University's Yann LeCun's most cited publication been cited?

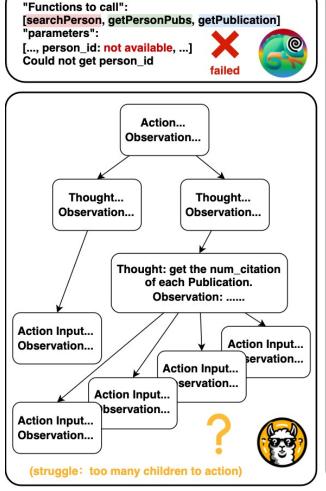
Step 3: Seek the target information on the page ≡ Google Scholar SIGN IN Google Yann Lecun Yann LeCun M FOLLOW GET MY OWN PROFILE Google Scholar Chief Al Scientist at Facebook & Silver Professor at the Courant Institute, New York https://scholar.google.com > cit Yann LeCun Verified email at cs.nyu.edu - Homepage VIEW ALL Cited by Al machine learning computer vision robotics image compression Yann LeCun. Chief Al Scientist a Since 2019 York University. Verified email at Citations 356553 245740 CITED BY YEAR TITLE h-index 148 115 Wikipedia 305 i10-index https://en.wikipedia.org > wiki > Deep learning 79904 2015 Y LeCun, Y Bengio, G Hinton Yann LeCun nature 521 (7553), 436-444 Yann André LeCun is a French-A Yann Lecunl Gradient-based learning applied to document recognition 1998 65097 Y LeCun, L Bottou, Y Bengio, P Haffner machine learning, computer visio Proceedings of the IEEE 86 (11), 2278-2324 Backpropagation applied to handwritten zip code recognition 16702 Y LeCun, B Boser, JS Denker, D Henderson, RE Howard, W Hubbard, ... Google 搜 http://vann.lecun.com Neural computation 1 (4), 541-551 Yann LeCun's Home Pa Convolutional networks for images, speech, and time series 1995 8129 Y LeCun. Y Bengio Yann LeCun, VP and Chief AI Sc The handbook of brain theory and neural networks 3361 (10), 1995 Science, Neural Science, and Ele OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 7710 2014 Public access VIEW ALL Yann's DjVu Page · MNIST hand P Sermanet, D Eigen, X Zhang, M Mathieu, R Fergus, Y LeCun International Conference on Learning Representations (ICLR 2014) 0 articles 17 articles The MNIST database of handwritten digits 7592 1998 not available available Y LeCun, C Cortes https://twitter.com > vlecun Based on funding mandates Efficient backprop 2002 7145 Yann LeCun (@ylecun) Y LeCun, L Bottou, GB Orr, KR Müller Neural networks: Tricks of the trade, 9-50 Professor at NYU, Chief Al Scien Robotics, etc. ACM Turing Award Character-level convolutional networks for text classification 6704 2015 Co-authors VIEW ALL X Zhang, J Zhao, Y LeCun Advances in neural information processing systems 28 Yoshua Bengio Handwritten digit recognition with a back-propagation network

6384

Professor of computer science.

Academic Information Systems API Calling

Query: How many times has New York University's Yann LeCun's most cited publication been cited?


ID	API name	Type	Parameter(s)	Return		
1	searchPerson	fuzzy	name, organiza-	[person_id, name, num_citation, interest,		
			tion, interest	num_pubs, organization]		
2	searchPublication	fuzzy	publication_info	[pub_id, title, year]		
3	getCoauthors	exact	person_id	[id, name, relation]		
4	getPersonInterest	exact	person_id	list of interests		
5	getPublication	exact	pub_id	abstract, author_list, num_citation		
6	getPersonBasicInfo	exact	pub_id	person_id, name, gender, organization, posi-		
				tion, bio, education_experience, email		
7	getPersonPubs	exact	person_id	[authors_name_list, pub_id, title,		
				num_citation, year]		

LLM API-Using

Query: How many times has New York University's Yann LeCun's most cited publication been cited?

Retrieval & Execution: Failed to handle API Coupling

DFSDT Reasoning: Could not meet the Efficiency needs

SoAy:

Pre-defined Solution &
Solution-based Program
Generation

Fig.6 Different API-using sturctures facing the same academic question.

SoAy: SoAPIs Applying Framework

Query: How many times has New York University's Yann LeCun's most cited publication been cited?

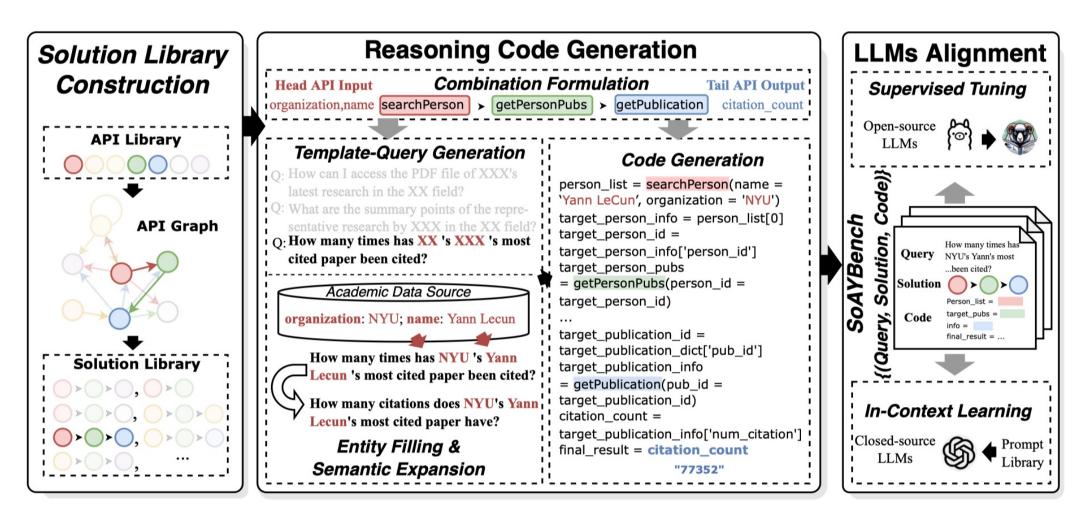


Fig.7 SoAy Framework.

SoAyBench

To assess API utilization capabilities, it is essential to publish the foundational APIs of AMiner for LLMs to invoke and provide a test set composed of academic {Query, Code, Answer} triplets for evaluation.

However, given the dynamic nature of academic data, with scholar and publication information rapidly changing, maintaining a test set with static answers proves challenging.

To address this challenge, we clone AMiner's SoAPIs at a specific point in time to create a static service, from which we generate a corresponding static test set.

SoAyBench now are open-sourced at : Hugging Face: https://huggingface.co/datasets/frederickwang99/SoAyBench

Question statistics in SoAyBench.

Question Type	One-hop	Two-hop	Three-hop	Total
Scholar	540	1,800	540	2,980
Publication	180	180	720	1,080
Total	720	1,980	1,230	3,960

SoAyEval

We outline five types of evaluation metrics.

- * EM: Both the retrieved solution and answer Exactly Match the ground truth.
- * DS: The answer is correct, but a **D**ifferent Solution is retrieved compared to the ground truth.
- * WS: The answer is wrong due to a Wrong Solution.
- * WP: The solution is correct but the answer is wrong, due to a Wrong Program generated for the solution, which can be executed but yields the wrong answer.
- * EE: Execution Error, which may by caused by the generation of a nonexecutable program or network errors during the APIs request.

$$ACC = EM + DS$$

$$Score = \frac{w_1 \cdot ACC_1 + w_2 * \cdot ACC_2 + w_3 \cdot ACC_3}{w_1 + w_2 + w_3}$$

Results on SoAyBench - Part I

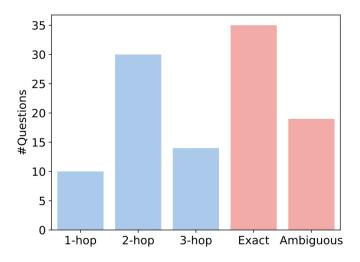
Results on SoAyBench. DS, WS, WP and EE are differenct types of error, ACC denotes a accurate answer, EM means exact match, not only the answer but also the solution. Score is a weighted sum of the ACC score on different question types.

Made 1		O	Error Rate↓				EM(oz)	100(%)	
Method	Version	Question Type	DS(%)	WS(%)	WP(%)	EE(%)	EM(%)	ACC(%)	Score
		one-hop	12.50±8.00	24.31±13.26	1.39±0.00	54.17±16.01	7.64±5.20	20.14	
ToolLLaMA	7B	two-hop	10.10±4.10	47.22±12.28	0.76 ± 2.27	38.13±9.62	3.79 ± 2.92	13.89	16.72
		three-hop	11.51±6.53	38.10±14.27	1.19±3.57	43.25±13.07	5.95±4.59	17.46	
		one-hop	55.56±21.06	15.28±7.80	4.86±0.00	21.53±10.67	2.78±0.00	58.33	
	3.5	two-hop	29.55±11.47	34.34±9.23	4.29±3.64	25.76±8.65	6.06±4.11	35.61	43.22
		three-hop	38.10±15.09	28.57±11.35	3.17±2.50	25.00±8.87	5.16±6.19	43.25	
ODT DECDT		one-hop	25.69±10.91	9.72±5.00	2.78±0.00	22.92±9.47	38.89±15.60	64.58	
GPT-DFSDT	3.5-16k	two-hop	16.92±7.76	15.91±6.05	3.28±1.31	46.97±7.13	16.92±4.99	33.84	43.67
		three-hop	18.65±7.37	15.48±5.63	2.78 ± 0.00	38.49±10.43	24.60±8.53	43.25	
		one-hop	27.78±9.60	2.08±0.00	4.17±5.00	28.47±6.82	37.50±10.91	65.28	
	4	two-hop	26.26±8.89	9.60±4.88	17.93±5.40	15.15±5.39	31.06±9.12	57.32	58.16
		three-hop	22.22±8.65	7.54±4.46	17.06±6.96	19.05±6.45	34.13±9.87	56.35	
		one-hop	27.78±8.70	15.97±7.73	3.47±0.00	13.19±7.80	39.58±9.12	67.36	
	3.5	two-hop	33.84±4.94	9.60±4.75	6.06±2.81	13.13±7.12	37.37±5.06	71.21	67.30
		three-hop	22.22±6.43	12.70±5.91	9.52±4.42	13.10±6.72	42.46±6.00	64.68	
ODT 0 417		one-hop	28.47±11.67	15.28±6.12	1.39±0.00	17.36±7.78	37.50±9.07	65.97	
GPT-SoAY	3.5-16k	two-hop	35.86 ± 6.01	7.32 ± 3.41	5.30±2.18	15.91±7.16	35.61±4.65	71.46	66.76
		three-hop	23.02±7.16	10.32±4.99	8.33 ± 3.42	17.46±7.37	40.87±6.26	63.89	
		one-hop	0.00±0.00	0.00±0.00	1.39±0.00	2.78±0.00	95.83±5.70	95.83	
	4	two-hop	15.91±4.71	1.26±0.00	9.34±1.07	2.02±1.69	71.46±3.74	87.37	86.57
		three-hop	6.75±0.00	0.40 ± 0.00	14.68±1.68	1.98±0.00	76.19±3.25	82.94	

Results on SoAyBench - Part II

Results on SoAyBench. DS, WS, WP and EE are differenct types of error, ACC denotes a accurate answer, EM means exact match, not only the answer but also the solution. Score is a weighted sum of the ACC score on different question types.

		one-hop	27.78±8.70	15.97±7.73	3.47±0.00	13.19±7.80	39.58±9.12	67.36	
	3.5	two-hop	33.84±4.94	9.60±4.75	6.06±2.81	13.13±7.12	37.37±5.06	71.21	67.30
		three-hop	22.22±6.43	12.70±5.91	9.52±4.42	13.10±6.72	42.46±6.00	64.68	
ODT C AV		one-hop	28.47±11.67	15.28±6.12	1.39±0.00	17.36±7.78	37.50±9.07	65.97	
GPT-SoAY	3.5-16k	two-hop	35.86±6.01	7.32 ± 3.41	5.30±2.18	15.91±7.16	35.61±4.65	71.46	66.76
		three-hop	23.02±7.16	10.32±4.99	8.33 ± 3.42	17.46±7.37	40.87±6.26	63.89	
		one-hop	0.00±0.00	0.00±0.00	1.39±0.00	2.78±0.00	95.83±5.70	95.83	
	4	two-hop	15.91±4.71	1.26 ± 0.00	9.34±1.07	2.02±1.69	71.46±3.74	87.37	86.57
		three-hop	6.75±0.00	0.40 ± 0.00	14.68±1.68	1.98±0.00	76.19±3.25	82.94	
		one-hop	0.00±0.00	0.00±0.00	0.00±0.00	0.69±0.00	99.31±2.94	99.31	
	Chat-7B	two-hop	0.00 ± 0.00	0.00 ± 0.00	20.20±3.84	2.53±1.97	77.27±2.70	77.27	85.76
		three-hop	0.00 ± 0.00	0.00 ± 0.00	9.92±3.56	3.17±2.50	86.90±2.72	86.90	
0 4377 374		one-hop	0.69±0.00	0.00±0.00	0.69±0.00	5.56±4.37	93.06±7.50	93.75	
SoAYLLaMA	Code-7B	two-hop	0.25 ± 0.00	3.28 ± 0.00	7.07±2.75	4.80±3.69	84.60±5.18	84.85	88.95
		three-hop	0.40 ± 0.00	0.00 ± 0.00	4.76±2.14	5.16±4.57	89.68±6.54	90.08	
		one-hop	0.00±0.00	0.00±0.00	1.39±0.00	0.00±0.00	98.61±4.03	98.61	
	Code-13B	two-hop	0.00 ± 0.00	2.27 ± 0.00	14.14±2.14	0.51 ± 0.00	83.08±3.32	83.08	92.74
		three-hop	0.00 ± 0.00	0.00 ± 0.00	2.38±2.86	0.40 ± 0.00	97.22±4.28	97.22	


Efficiency & Online Evaluation

To evaluate how efficient are SoAy, we compare the average response time of different methods (second).

Method	7B	13B	3.5	3.5-16k	4
ToolLLaMA	45.10	/	/	/	/
GPT-DFSDT	/	/	39.12	53.73	70.92
SoAyGPT	/	/	6.15	6.40	26.05
SoAyLLaMA-Code	1.12	1.35	/	/	/

To test weather SoAy could meet the need of real-world user requirement, we implement SoAy as an online application, gather 56 real user demands from the logs, and invite 10 annotators to conduct human

evaluation.

1-hop

2-hop

3-hop

Exact

Ambiguous

0 20 40 60 80 100 Votes for the preferred answer (%)

Fig.8 Online Gathered Question statistics.

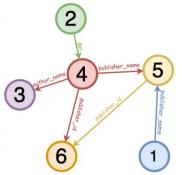
Fig.9 Results of Online Human Evaluation

Results on SoAyBench - Weak to Strong Supervision

A Small Model trained on Data generated by GPT-4 can outperform GPT-4, and also more efficient.

three-hop 23.02±7.16 10.32±4.99 8.33±3.42 17.46±7.37 40.87±6.26 63.89 one-hop 0.00±0.00 0.00±0.00 1.39±0.00 2.78±0.00 95.83±5.70 95.83 two-hop 15.91±4.71 1.26±0.00 9.34±1.07 2.02±1.69 71.46±3.74 87.37 86.57 three-hop 6.75±0.00 0.40±0.00 14.68±1.68 1.98±0.00 76.19±3.25 82.94 One-hop 0.00±0.00 0.00±0.00 0.00±0.00 0.69±0.00 99.31±2.94 99.31 two-hop 0.00±0.00 0.00±0.00 20.20±3.84 2.53±1.97 77.27±2.70 77.27 three-hop 0.00±0.00 0.00±0.00 9.92±3.56 3.17±2.50 86.90±2.72 86.90 SOAYLLaMA Code-7B two-hop 0.69±0.00 0.00±0.00 0.69±0.00 5.56±4.37 93.06±7.50 93.75 two-hop 0.25±0.00 3.28±0.00 7.07±2.75 4.80±3.69 84.60±5.18 84.85 88.95 three-hop 0.40±0.00 0.00±0.00 4.76±2.14 5.16±4.57 89.68±6.54 90.08 one-hop 0.00±0.00 0.00±0.00 1.39±0.00 0.00±0.00 98.61±4.03 98.61										
SOAYGPT Soayage										
SOAYGPT 3.5-16k one-hop 3.5-16k two-hop 35.86±6.01 7.32±3.41 5.30±2.18 15.91±7.16 35.61±4.65 71.46 66.76 one-hop 0.00±0.00 0.00±0.00 1.39±0.00 2.78±0.00 95.83±5.70 95.83 4 two-hop 15.91±4.71 1.26±0.00 9.34±1.07 2.02±1.69 71.46±3.74 87.37 40.87±6.26 63.89 66.76 color-hop 0.00±0.00 0.00±0.		3.5	1							67.30
3.5-16k two-hop 35.86±6.01 7.32±3.41 5.30±2.18 15.91±7.16 35.61±4.65 71.46 66.76	So AssCPT		three-hop	22.22±6.43	12.70±5.91	9.52±4.42	13.10±6.72	42.46±6.00	64.68	
3.5-16k two-hop 35.86±6.01 7.32±3.41 5.30±2.18 15.91±7.16 35.61±4.65 71.46 66.76			one-hop	28.47±11.67	15.28±6.12	1.39±0.00	17.36±7.78	37.50±9.07	65.97	
One-hop 0.00±0.00 0.00±0.00 1.39±0.00 2.78±0.00 95.83±5.70 95.83 two-hop 15.91±4.71 1.26±0.00 9.34±1.07 2.02±1.69 71.46±3.74 87.37 three-hop 6.75±0.00 0.40±0.00 14.68±1.68 1.98±0.00 76.19±3.25 82.94 One-hop 0.00±0.00 0.00±0.00 0.00±0.00 0.69±0.00 99.31±2.94 99.31 two-hop 0.00±0.00 0.00±0.00 20.20±3.84 2.53±1.97 77.27±2.70 77.27 three-hop 0.00±0.00 0.00±0.00 9.92±3.56 3.17±2.50 86.90±2.72 86.90 Three-hop 0.69±0.00 0.00±0.00 0.69±0.00 5.56±4.37 93.06±7.50 93.75 two-hop 0.25±0.00 3.28±0.00 7.07±2.75 4.80±3.69 84.60±5.18 84.85 88.95 three-hop 0.40±0.00 0.00±0.00 4.76±2.14 5.16±4.57 89.68±6.54 90.08 Code-13B two-hop 0.00±0.00 0.00±0.00 1.39±0.00 0.00±0.00 98.61±4.03 98.61 Code-13B two-hop 0.00±0.00 2.27±0.00 14.14±2.14 0.51±0.00 83.08±3.32 83.08 92.74	SOAYGPI	3.5-16k	two-hop	35.86±6.01	7.32 ± 3.41	5.30 ± 2.18	15.91±7.16	35.61±4.65	71.46	66.76
4 two-hop 15.91±4.71 1.26±0.00 9.34±1.07 2.02±1.69 71.46±3.74 87.37 86.57 three-hop 6.75±0.00 0.40±0.00 14.68±1.68 1.98±0.00 76.19±3.25 82.94 Chat-7B		th	three-hop	23.02±7.16	10.32±4.99	8.33±3.42	17.46±7.37	40.87±6.26	63.89	
three-hop 6.75±0.00 0.40±0.00 14.68±1.68 1.98±0.00 76.19±3.25 82.94 One-hop		ļ	one-hop	0.00 ± 0.00	0.00 ± 0.00	1.39±0.00	2.78±0.00	95.83±5.70	95.83	
One-hop		4	two-hop	15.91±4.71	1.26±0.00	9.34±1.07	2.02±1.69	71.46±3.74	87.37	86.57
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			three-hop	6.75±0.00	0.40 ± 0.00	14.68±1.68	1.98±0.00	76.19±3.25	82.94	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			one-hop	0.00±0.00	0.00±0.00	0.00±0.00	0.69±0.00	99.31±2.94	99.31	
SOAYLLaMA one-hop two-hop three-hop three-hop 0.69±0.00 0.69±0.00 0.00±0.00 0.69±0.00 0.69±0.00 5.56±4.37 0.06±7.50 0.00±7.50		Chat-7B	two-hop	0.00 ± 0.00	0.00 ± 0.00	20.20±3.84	2.53±1.97	77.27±2.70	77.27	85.76
SoAyLLaMA Code-7B two-hop three-hop 0.25±0.00 3.28±0.00 7.07±2.75 4.80±3.69 84.60±5.18 84.85 88.95 one-hop 0.40±0.00 0.00±0.00 4.76±2.14 5.16±4.57 89.68±6.54 90.08 code-13B two-hop 0.00±0.00 2.27±0.00 14.14±2.14 0.51±0.00 83.08±3.32 83.08 92.74			three-hop	0.00 ± 0.00	0.00 ± 0.00	9.92±3.56	3.17±2.50	86.90±2.72	86.90	
Code-/B two-hop 0.25±0.00 3.28±0.00 7.07±2.75 4.80±3.69 84.60±3.18 84.85 88.95 three-hop 0.40±0.00 0.00±0.00 4.76±2.14 5.16±4.57 89.68±6.54 90.08 one-hop 0.00±0.00 0.00±0.00 1.39±0.00 0.00±0.00 98.61±4.03 98.61 Code-13B two-hop 0.00±0.00 2.27±0.00 14.14±2.14 0.51±0.00 83.08±3.32 83.08	Co Avil I - MA		one-hop	0.69±0.00	0.00±0.00	0.69±0.00	5.56±4.37	93.06±7.50	93.75	
one-hop 0.00±0.00 0.00±0.00 1.39±0.00 0.00±0.00 98.61±4.03 98.61 Code-13B two-hop 0.00±0.00 2.27±0.00 14.14±2.14 0.51±0.00 83.08±3.32 83.08 92.74	SOAYLLAMA	Code-7B	two-hop	0.25 ± 0.00	3.28±0.00	7.07 ± 2.75	4.80±3.69	84.60±5.18	84.85	88.95
Code-13B two-hop 0.00±0.00 2.27±0.00 14.14±2.14 0.51±0.00 83.08±3.32 83.08 92.74			three-hop	0.40 ± 0.00	0.00 ± 0.00	4.76±2.14	5.16±4.57	89.68±6.54	90.08	
			one-hop	0.00±0.00	0.00±0.00	1.39±0.00	0.00±0.00	98.61±4.03	98.61	
three-hop 0.00±0.00 0.00±0.00 2.38±2.86 0.40±0.00 97.22±4.28 97.22		Code-13B	two-hop	0.00 ± 0.00	2.27±0.00	14.14±2.14	0.51 ± 0.00	83.08±3.32	83.08	92.74
			three-hop	0.00 ± 0.00	0.00 ± 0.00	2.38±2.86	0.40 ± 0.00	97.22±4.28	97.22	

Method	7B	13B	3.5	3.5-16k	4
ToolLLaMA	45.10	/	/	/	/
GPT-DFSDT	/	/	39.12	53.73	70.92
SoAyGPT		/	6.15	6.40	26.05
SoAyLLaMA-Code	1.12	1.35	/	/	/


Deployment on other Academic Platforms

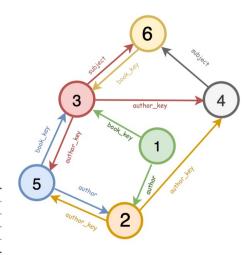
AMiner APIs are NOT the only that face the coupling challenges.

We also deployment SoAy on two other open-sourced scenarios: OpenLibrary and CrossRef

ID	API name	Type	Parameter(s)	Return
1	searchPublisherBySubject	fuzzy	subject	[publisher_name, doi_count]
2	searchWorksByTitle	fuzzy	work_title	[type, author, doi, publisher]
3	searchWorksByAuthor	fuzzy	author_name	[works_title, works_doi]
4	getWorksByDoi	exact	doi	[author_name, work_title, pub-
				lisher_name, type, reference_count]
5	getPublisherBasicInfo	exact	publisher_name	[publisher_id, current_dois, back-
				file_dois, total_dois, doi_prefix]
6	getPublisherWorks	exact	publisher_id	[works_title, doi, works_author]

(a) CrossrefAPI Library

Solution	Parameter(s)	Return	Question Template
searchPublisherBySubject	subject	publisher_name	Please list some publishers in the
			XXX field.
$searchPublisherBySubject \rightarrow get-$	subject	publisher_id	Please give me some publishers'
PublisherBasicInfo			id of crossref about the field of
			XXX.
seachPublisherBySubject → get-	subject	doi	Can you list some articles' DOI
PublisherBasicInfo → getPublish-			numbers in the field of XXX?
erWorks			
searchWorksByTitle	work_title	type	I want to know the type of work
			XXX.


(b) CrossrefAPI Graph

(c) Solution Library (partly shown)

ID	API name	Type	Parameter(s)	Return
1	searchBook	fuzzy	book_info	[book_key, title, author_name, year]
2	searchAuthor	fuzzy	author_info	[author_key, name, list of alternate_names]
3	getBook	exact	book_key	description, list of author, title, first_publish,
				list of subjects
4	getAuthorBasicInfo	exact	author_key	name, list of alternate_names, birth_date,
				work_count, top_work, top_subjects
5	getAuthorWorks	exact	author_key, amount	[book_key, title, subjects]
6	searchSubject	fuzzy	subject	[book_key, title]

(a) SoAPI Library

Solution	Parameter(s)	Return	Question Template
searchSubject	subject	list of books	Please list some books on XXX topic.
searchAuthor→getAuthorWorks	author_info	list of books	Which works were written by XXX?
searchBook→getBook	book_info	book_description	Introduce some information about XXX.
searchBook→getBook→getAuthorWorks	book_info	list of books	What other books has the author of XXX written?

(b) SoAPI Graph

Challenges of the SoAyBench & SoAyEval

There's still some challenges on the evaluation part of specific-domain tool using.

- The benchmark or evaluation set is limited on the Academic domain.
- The complexity of testing on the combination of the LLMs, Tool-using Workflows and the domains.

Method	7B	13B	3.5	3.5-16k	4
ToolLLaMA	45.10	/	/	/	/
GPT-DFSDT	/	/	39.12	53.73	70.92
SoAyGPT	/	/	6.15	6.40	26.05
SoAyLLaMA-Code	1.12	1.35	/	/	/

R-Eval: A Unified Toolkit for Evaluating Domain Knowledge of Retrieval Augmented Large Language Models

Shangqing Tu*
DCST, Tsinghua University
Beijing 100084, China
tsq22@mails.tsinghua.edu.cn

Yuyang Xie DCST, Tsinghua Universiity Beijing 100084, China xieyy21@mails.tsinghua.edu.cn

Jing Zhang SoI, Renmin University of China Beijing 100084, China zhang-jing@ruc.edu.cn Yuanchun Wang*
SoI, Renmin University of China
Beijing 100084, China
wangyuanchun@ruc.edu.cn

Yaran Shi SIOE, Beihang Universiity Beijing 100084, China syr2021@buaa.edu.cn

Lei Hou BNRist, DCST, Tsinghua University Beijing 100084, China houlei@tsinghua.edu.cn Jifan Yu DCST, Tsinghua Universiity Beijing 100084, China yujf21@mails.tsinghua.edu.cn

Xiaozhi Wang DCST, Tsinghua Universiity Beijing 100084, China wangxz20@mails.tsinghua.edu.cn

Juanzi Li BNRist, DCST, Tsinghua University Beijing 100084, China lijuanzi@tsinghua.edu.cn

[Paper] Accepted by KDD'24 (ADS track), under camera ready preparation.

[Code & Toolkit] https://github.com/THU-KEG/R-Eval

Background - Component Selection

Given a Specific Domain, which LLM and which RAG Workflow to choose?

Shortcomings of exsisting evaluations:

- Insufficient exploration of combinations between LLMs and RAG workflows.
- Lack comprehensive mining of the domain knowledge.

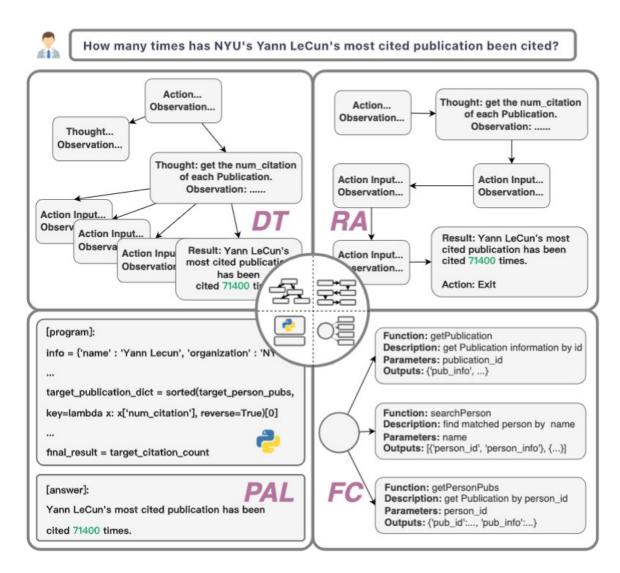
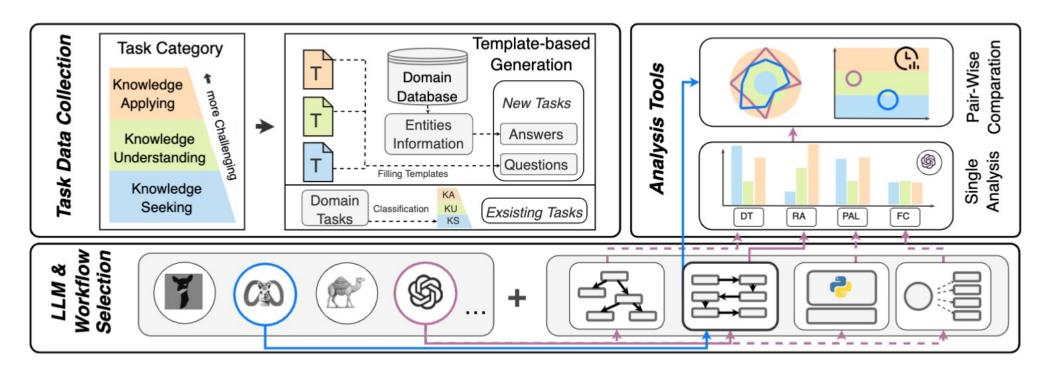



Fig. 10 Four Popular RAG Workflows.

Evaluation Framework

Inspired by KoLA and SoAy, We propose R-Eval, a Python toolkit designed to streamline the evaluation of different RAG workflows in conjunction with LLMs on a specific domain's task.

- A easy-to-use evaluation of the combination between RAG Workflows and LLMs
- Customized testing data in specific domains through template-based question generation

KoLA: https://iclr.cc/virtual/2024/poster/19238 SoAy: https://arxiv.org/pdf/2405.15165

Fig.11 Framework of R-Eval.

X17 1 0	****	aminer KS		aminer KU		aminer KA		Overall Average (Level 1, 2, 3)						
Workflow	LLM	1-3	Rank	2-4	Rank	3-5	Rank	wiki	Rank	aminer	Rank	all	Rank	
ReAct	gpt-4-1106	89.7	1st	46.7	3rd	57.7	1st	38.8	1st	64.7	1st	45.3	1st	
PAL	gpt-3.5-turbo	80.1	3rd	50.7	2nd	54.9	2nd	19.9	6th	61.9	2nd	30.4	2nd	
PAL	gpt-4-1106	59.3	4th	56.8	1st	52.7	3rd	20.3	5th	56.2	3rd	29.2	3rd	
ReAct	llama2-7b-chat	45.2	5th	36.5	6th	21.5	6th	23.8	3rd	34.4	5th	26.4	4th	
PAL	llama2-13b	25.3	6th	36.4	7th	20.3	7th	25.2	2nd	27.3	6th	25.7	5th	
ReAct	gpt-3.5-turbo	84.6	2nd	4.0	14th	33.0	4th	19.6	7th	40.6	4th	24.9	6th	
ReAct	vicuna-13b	19.9	10th	6.0	13th	7.1	16th	20.7	4th	11.0	17th	18.2	7th	
PAL	tulu-7b	9.1	15th	26.8	9th	11.5	12th	18.9	8th	15.8	9th	18.1	8th	
PAL	vicuna-13b	4.5	17th	40.9	4th	2.3	20th	16.7	9th	15.9	8th	16.5	9th	
ReAct	llama2-13b	16.7	13th	0.7	19th	23.2	5th	15.0	10th	13.5	12th	14.6	10th	
PAL	llama2-7b-chat	18.7	12th	2.8	15th	16.1	8th	12.4	11th	12.5	14th	12.4	11th	
PAL	codellama-13b	4.4	18th	38.3	5th	8.1	14th	10.0	14th	16.9	7th	11.7	12th	
PAL	toolllama2-7b	1.6	20th	24.4	10th	4.6	18th	12.2	12th	10.2	18th	11.7	13th	
ReAct	tulu-7b	4.0	19th	27.8	8th	7.9	15th	10.3	13th	13.2	13th	11.0	14th	
DFSDT	gpt-4-1106	20.6	9th	9.6	12th	11.8	11th	9.9	15th	14.0	11th	10.9	15th	
FC	gpt-4-1106	24.7	7th	10.9	11th	10.2	13th	8.2	18th	15.3	10th	9.9	16th	
FC	gpt-3.5-turbo	19.0	11th	1.0	17th	15.9	9th	8.8	16th	12.0	15th	9.6	17th	
ReAct	toolllama2-7b	15.0	14th	2.2	16th	5.7	17th	8.3	17th	7.6	19th	8.1	18th	
DFSDT	gpt-3.5-turbo	20.7	8th	0.2	20th	13.8	10th	4.8	20th	11.6	16th	6.5	19th	
ReAct	codellama-13b	0.2	21th	0.8	18th	0.7	21th	7.0	19th	0.6	21th	5.4	20th	
DFSDT	toolllama2-7b	7.1	16th	0.0	21th	2.3	19th	3.5	21th	3.1	20th	3.4	21th	

Fig.12 Evaluation Results of R-Eval on AMiner, wiki and overall ranking.

The same
Workflow +
LLM,

Same Domain Task

Differenct Level

Workflow	LLM	aminer KS		aminer KU		aminer KA		Overall Average (Level 1, 2, 3)						
WORKHOW	LLM	1-3	Rank	2-4	Rank	3-5	Rank	wiki	Rank	aminer	Rank	all	Rank	
ReAct	gpt-4-1106	89.7	1st	46.7	3rd	57.7	1st	38.8	1st	64.7	1st	45.3	1st	
PAL	gpt-3.5-turbo	80.1	3rd	50.7	2nd	54.9	2nd	19.9	6th	61.9	2nd	30.4	2nd	
PAL	gpt-4-1106	59.3	4th	56.8	1st	52.7	3rd	20.3	5th	56.2	3rd	29.2	3rd	
ReAct	llama2-7b-chat	45.2	5th	36.5	6th	21.5	6th	23.8	3rd	34.4	5th	26.4	4th	
PAL	llama2-13b	25.3	6th	36.4	7th	20.3	7th	25.2	2nd	27.3	6th	25.7	5th	
ReAct	gpt-3.5-turbo	84.6	2nd	4.0	14th	33.0	4th	19.6	7th	40.6	4th	24.9	6th	
ReAct	vicuna-13b	19.9	10th	6.0	13th	7.1	16th	20.7	4th	11.0	17th	18.2	7th	
PAL	tulu-7b	9.1	15th	26.8	9th	11.5	12th	18.9	8th	15.8	9th	18.1	8th	
PAL	vicuna-13b	4.5	17th	40.9	4th	2.3	20th	16.7	9th	15.9	8th	16.5	9th	
ReAct	llama2-13b	16.7	13th	0.7	19th	23.2	5th	15.0	10th	13.5	12th	14.6	10th	
PAL	llama2-7b-chat	18.7	12th	2.8	15th	16.1	8th	12.4	11th	12.5	14th	12.4	11th	
PAL	codellama-13b	4.4	18th	38.3	5th	8.1	14th	10.0	14th	16.9	7th	11.7	12th	
PAL	toolllama2-7b	1.6	20th	24.4	10th	4.6	18th	12.2	12th	10.2	18th	11.7	13th	
ReAct	tulu-7b	4.0	19th	27.8	8th	7.9	15th	10.3	13th	13.2	13th	11.0	14th	
DFSDT	gpt-4-1106	20.6	9th	9.6	12th	11.8	11th	9.9	15th	14.0	11th	10.9	15th	
FC	gpt-4-1106	24.7	7th	10.9	11th	10.2	13th	8.2	18th	15.3	10th	9.9	16th	
FC	gpt-3.5-turbo	19.0	11th	1.0	17th	15.9	9th	8.8	16th	12.0	15th	9.6	17th	
ReAct	toolllama2-7b	15.0	14th	2.2	16th	5.7	17th	8.3	17th	7.6	19th	8.1	18th	
DFSDT	gpt-3.5-turbo	20.7	8th	0.2	20th	13.8	10th	4.8	20th	11.6	16th	6.5	19th	
ReAct	codellama-13b	0.2	21th	0.8	18th	0.7	21th	7.0	19th	0.6	21th	5.4	20th	
DFSDT	toolllama2-7b	7.1	16th	0.0	21th	2.3	19th	3.5	21th	3.1	20th	3.4	21th	

Fig.12 Evaluation Results of R-Eval on AMiner, wiki and overall ranking.

The same
Workflow +
LLM,

Different Domain

Workflow	LLM	aminer KS		aminer KU		aminer KA		Overall Average (Level 1, 2, 3)							
	LLWI	1-3	Rank	2-4	Rank	3-5	Rank	wiki	Rank	aminer	Rank	all	Rank		
ReAct	gpt-4-1106	89.7	1st	46.7	3rd	57.7	1st	38.8	1st	64.7	1st	45.3	1st		
PAL	gpt-3.5-turbo	80.1	3rd	50.7	2nd	54.9	2nd	19.9	6th	61.9	2nd	30.4	2nd		
PAL	gpt-4-1106	59.3	4th	56.8	1st	52.7	3rd	20.3	5th	56.2	3rd	29.2	3rd		
ReAct	llama2-7b-chat	45.2	5th	36.5	6th	21.5	6th	23.8	3rd	34.4	5th	26.4	4th		
PAL	llama2-13b	25.3	6th	36.4	7th	20.3	7th	25.2	2nd	27.3	6th	25.7	5th		
ReAct	gpt-3.5-turbo	84.6	2nd	4.0	14th	33.0	4th	19.6	7th	40.6	4th	24.9	6th		
ReAct	vicuna-13b	19.9	10th	6.0	13th	7.1	16th	20.7	4th	11.0	17th	18.2	7th		
PAL	tulu-7b	9.1	15th	26.8	9th	11.5	12th	18.9	8th	15.8	9th	18.1	8th		
PAL	vicuna-13b	4.5	17th	40.9	4th	2.3	20th	16.7	9th	15.9	8th	16.5	9th		
ReAct	llama2-13b	16.7	13th	0.7	19th	23.2	5th	15.0	10th	13.5	12th	14.6	10th		
PAL	llama2-7b-chat	18.7	12th	2.8	15th	16.1	8th	12.4	11th	12.5	14th	12.4	11th		
PAL	codellama-13b	4.4	18th	38.3	5th	8.1	14th	10.0	14th	16.9	7th	11.7	12th		
PAL	toolllama2-7b	1.6	20th	24.4	10th	4.6	18th	12.2	12th	10.2	18th	11.7	13th		
ReAct	tulu-7b	4.0	19th	27.8	8th	7.9	15th	10.3	13th	13.2	13th	11.0	14th		
DFSDT	gpt-4-1106	20.6	9th	9.6	12th	11.8	11th	9.9	15th	14.0	11th	10.9	15th		
FC	gpt-4-1106	24.7	7th	10.9	11th	10.2	13th	8.2	18th	15.3	10th	9.9	16th		
FC	gpt-3.5-turbo	19.0	11th	1.0	17th	15.9	9th	8.8	16th	12.0	15th	9.6	17th		
ReAct	toolllama2-7b	15.0	14th	2.2	16th	5.7	17th	8.3	17th	7.6	19th	8.1	18th		
DFSDT	gpt-3.5-turbo	20.7	8th	0.2	20th	13.8	10th	4.8	20th	11.6	16th	6.5	19th		
ReAct	codellama-13b	0.2	21th	0.8	18th	0.7	21th	7.0	19th	0.6	21th	5.4	20th		
DFSDT	toolllama2-7b	7.1	16th	0.0	21th	2.3	19th	3.5	21th	3.1	20th	3.4	21th		

Fig.12 Evaluation Results of R-Eval on AMiner, wiki and overall ranking.

The same LLM & Domain

Different Workflow

Workflow	LLM	aminer KS		aminer KU		aminer KA		Overall Average (Level 1, 2, 3)							
Workhow	LLWI	1-3	Rank	2-4	Rank	3-5	Rank	wiki	Rank	aminer	Rank	all	Rank		
ReAct	gpt-4-1106	89.7	1st	46.7	3rd	57.7	1st	38.8	1st	64.7	1st	45.3	1st		
PAL	gpt-3.5-turbo	80.1	3rd	50.7	2nd	54.9	2nd	19.9	6th	61.9	2nd	30.4	2nd		
PAL	gpt-4-1106	59.3	4th	56.8	1st	52.7	3rd	20.3	5th	56.2	3rd	29.2	3rd		
ReAct	llama2-7b-chat	45.2	5th	36.5	6th	21.5	6th	23.8	3rd	34.4	5th	26.4	4th		
PAL	llama2-13b	25.3	6th	36.4	7th	20.3	7th	25.2	2nd	27.3	6th	25.7	5th		
ReAct	gpt-3.5-turbo	84.6	2nd	4.0	14th	33.0	4th	19.6	7th	40.6	4th	24.9	6th		
ReAct	vicuna-13b	19.9	10th	6.0	13th	7.1	16th	20.7	4th	11.0	17th	18.2	7th		
PAL	tulu-7b	9.1	15th	26.8	9th	11.5	12th	18.9	8th	15.8	9th	18.1	8th		
PAL	vicuna-13b	4.5	17th	40.9	4th	2.3	20th	16.7	9th	15.9	8th	16.5	9th		
ReAct	llama2-13b	16.7	13th	0.7	19th	23.2	5th	15.0	10th	13.5	12th	14.6	10th		
PAL	llama2-7b-chat	18.7	12th	2.8	15th	16.1	8th	12.4	11th	12.5	14th	12.4	11th		
PAL	codellama-13b	4.4	18th	38.3	5th	8.1	14th	10.0	14th	16.9	7th	11.7	12th		
PAL	toolllama2-7b	1.6	20th	24.4	10th	4.6	18th	12.2	12th	10.2	18th	11.7	13th		
ReAct	tulu-7b	4.0	19th	27.8	8th	7.9	15th	10.3	13th	13.2	13th	11.0	14th		
DFSDT	gpt-4-1106	20.6	9th	9.6	12th	11.8	11th	9.9	15th	14.0	11th	10.9	15th		
FC	gpt-4-1106	24.7	7th	10.9	11th	10.2	13th	8.2	18th	15.3	10th	9.9	16th		
FC	gpt-3.5-turbo	19.0	11th	1.0	17th	15.9	9th	8.8	16th	12.0	15th	9.6	17th		
ReAct	toolllama2-7b	15.0	14th	2.2	16th	5.7	17th	8.3	17th	7.6	19th	8.1	18th		
DFSDT	gpt-3.5-turbo	20.7	8th	0.2	20th	13.8	10th	4.8	20th	11.6	16th	6.5	19th		
ReAct	codellama-13b	0.2	21th	0.8	18th	0.7	21th	7.0	19th	0.6	21th	5.4	20th		
DFSDT	toolllama2-7b	7.1	16th	0.0	21th	2.3	19th	3.5	21th	3.1	20th	3.4	21th		

Fig.12 Evaluation Results of R-Eval on AMiner, wiki and overall ranking.

The same Workflow & Domain

Different LLM

Workflow	LLM	amii	ner KS	aminer KU		aminer KA							
WOLKHOW	LLIVI	1-3	Rank	2-4	Rank	3-5	Rank	wiki	Rank	aminer	Rank	all	Rank
ReAct	gpt-4-1106	89.7	1st	46.7	3rd	57.7	1st	38.8	1st	64.7	1st	45.3	1st
PAL	gpt-3.5-turbo	80.1	3rd	50.7	2nd	54.9	2nd	19.9	6th	61.9	2nd	30.4	2nd
PAL	gpt-4-1106	59.3	4th	56.8	1st	52.7	3rd	20.3	5th	56.2	3rd	29.2	3rd
ReAct	llama2-7b-chat	45.2	5th	36.5	6th	21.5	6th	23.8	3rd	34.4	5th	26.4	4th
PAL	llama2-13b	25.3	6th	36.4	7th	20.3	7th	25.2	2nd	27.3	6th	25.7	5th
ReAct	gpt-3.5-turbo	84.6	2nd	4.0	14th	33.0	4th	19.6	7th	40.6	4th	24.9	6th
ReAct	vicuna-13b	19.9	10th	6.0	13th	7.1	16th	20.7	4th	11.0	17th	18.2	7th
PAL	tulu-7b	9.1	15th	26.8	9th	11.5	12th	18.9	8th	15.8	9th	18.1	8th
PAL	vicuna-13b	4.5	17th	40.9	4th	2.3	20th	16.7	9th	15.9	8th	16.5	9th
ReAct	llama2-13b	16.7	13th	0.7	19th	23.2	5th	15.0	10th	13.5	12th	14.6	10th
PAL	llama2-7b-chat	18.7	12th	2.8	15th	16.1	8th	12.4	11th	12.5	14th	12.4	11th
PAL	codellama-13b	4.4	18th	38.3	5th	8.1	14th	10.0	14th	16.9	7th	11.7	12th
PAL	toolllama2-7b	1.6	20th	24.4	10th	4.6	18th	12.2	12th	10.2	18th	11.7	13th
ReAct	tulu-7b	4.0	19th	27.8	8th	7.9	15th	10.3	13th	13.2	13th	11.0	14th
DFSDT	gpt-4-1106	20.6	9th	9.6	12th	11.8	11th	9.9	15th	14.0	11th	10.9	15th
FC	gpt-4-1106	24.7	7th	10.9	11th	10.2	13th	8.2	18th	15.3	10th	9.9	16th
FC	gpt-3.5-turbo	19.0	11th	1.0	17th	15.9	9th	8.8	16th	12.0	15th	9.6	17th
ReAct	toolllama2-7b	15.0	14th	2.2	16th	5.7	17th	8.3	17th	7.6	19th	8.1	18th
DFSDT	gpt-3.5-turbo	20.7	8th	0.2	20th	13.8	10th	4.8	20th	11.6	16th	6.5	19th
ReAct	codellama-13b	0.2	21th	0.8	18th	0.7	21th	7.0	19th	0.6	21th	5.4	20th
DFSDT	toolllama2-7b	7.1	16th	0.0	21th	2.3	19th	3.5	21th	3.1	20th	3.4	21th

Fig.12 Evaluation Results of R-Eval on AMiner, wiki and overall ranking.

Visilization of the performance

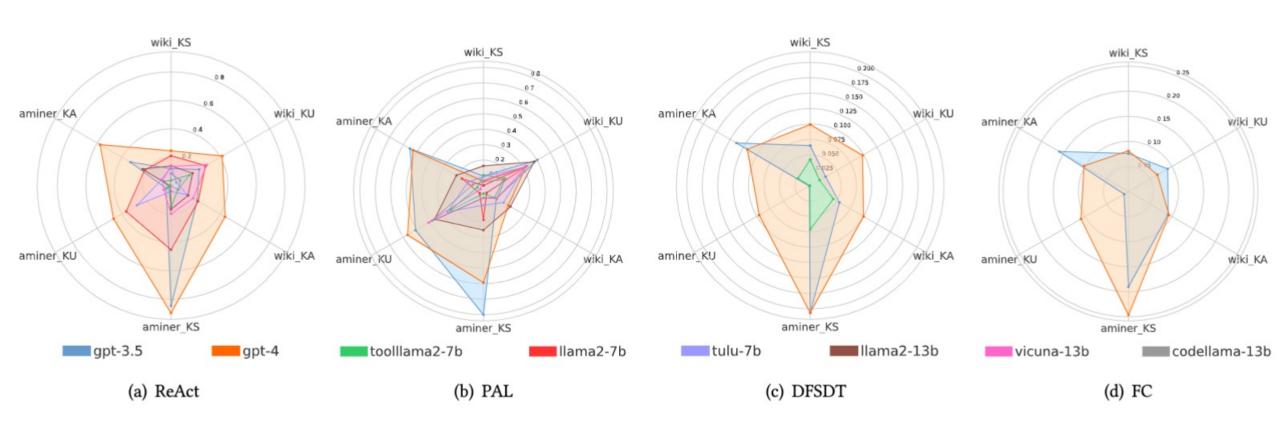


Fig.13 Radar map of single system's performance.

Error Analysis & Efficiency Evaluation

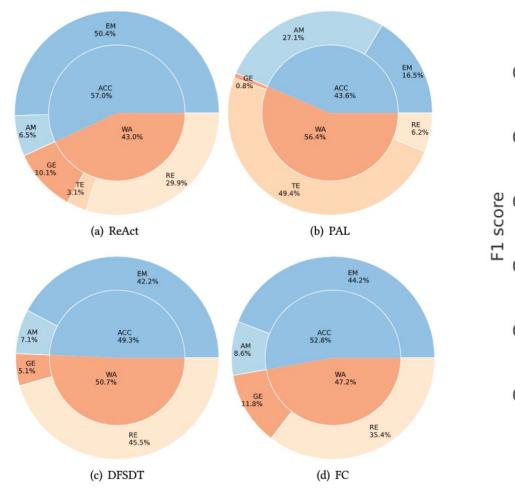


Fig.14 Error Analysis.

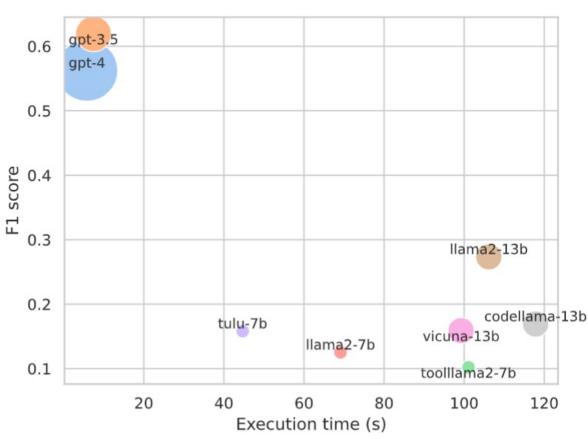


Fig.15 Efficiency Evaluation.

Challenges & Future Directions

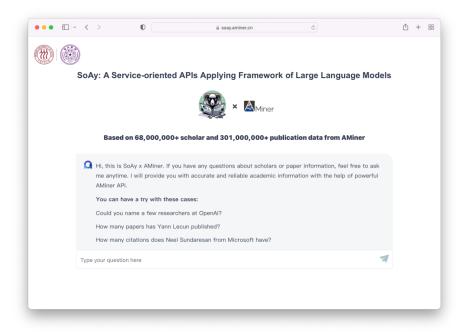
In the area of Tool Learning and Specific Domain Application, there still remains some challenges.

- High Latency in Tool Learning,
- Rigorous and Comprehensive Evaluation,
- Comprehensive and Accessible Tools,
- Safe and Robust Tool Learning,
- Real-Word Benchmark for Tool Learning,
- Tool Learning with Multi-Modal

Welcome to Follow our work!

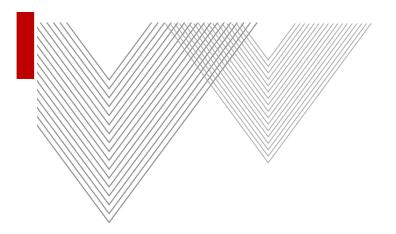
SoAy Applied System Link:

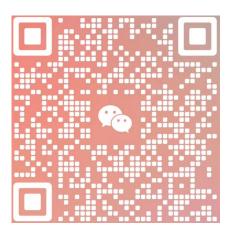
http://soay.aminer.cn



Github Link:

https://github.com/RUCKBReasoning/SoAy


R-Eval Github Link:


https://github.com/THU-KEG/R-Eval

- ▶ What would be needed for a user with their own domain-specific dataset to apply this framework on their data?
- ▶ What kind of retrieval components of dense retrieval or generative retrieval are built it?
- ▶ Can LLM based on knowledge graph retrieval also be incorporated under R-eval?
- ▶ R-eval includes the retrieval component inside? Then, how other collections can be added for RALLM?
- ▶ Is R-Eval just to collect some of the existing methods and benchmarks, and integrate them together to conduct a comprehensive evaluation?
- ▶ There are multiple LLMs missing in two rightmost figures in Figure 4.

Yuanchun's WeChat

Thank you!

